
Extensions for 3D Graphics Rendering Engine 1

 A Prototype for a Graphics Library Utility

To facilitate the design of drivers for the proposed architecture, we must develop a

Graphics Library Utility (GLU). The primitives of the GLU are strips, fans, meshes and

indexed meshes. Current rendering methods are based on triangle databases (strips, fans,

meshes) resulting from offline tessellation via specialized tools. These tools tessellate

the patch databases and ensure that there are no cracks between the resulting triangle

databases. The tools use some form of zippering. The triangle databases are then

streamed over the AGP bus into the GPU. There is no need for any coherency between

the strips, fans, etc., since they are, by definition, coherent (there are no T-joints between

them). The net result is that the GPU does not need any information about the entire

database of triangles, which can be quite huge. Thus, the GPUs can process virtually

infinite triangle databases. Referring to Figure 1 in a strip, the first patch will contribute

sixteen vertices, and each successive patch will contribute only twelve vertices because

four vertices are shared with the previous patch. Of the sixteen vertices of

Strip (S1, S2, ... Si, ... Sn)

P
11 P

12
P

13

P
14

P

21

P

31

P
41

P
42

P
43

P
44

S
1

S2 Si

16 Control points 12 Control points 12 Control points

P11, P14, P41, P44 (Color, texture, geometry)

S
1 P12 ... P43 (Geometry)

N = outwards pointing normal

P
11

, P
14

, P
41

, P
44

Si {P12 ... P43 } - {P21, P31}

N

Fig. 1. Strip

P
23

P
22 P

24

P
33

P
32 P

34

2 A. Sfarti et al.

Mesh (S 11, S12, ... S 1N, ... S21, ... S 2N, ... SM1 , ... SMN)

S
M1

12 Control

Points

S
M2

9

S
Mi

9

S
MN

9

S
21

12 Control

Points

S
22

9 Control

Points

S

2i

9

S

2N

9

S
11

16 Control

Points

S
12

12 Control

Points

S

1i

12

S

1N

12

Fig. 2. Mesh

P11, P14, P41, P44 (Color, texture, geometry)

S
1 { P ... P } - {P ,P , P } (Geometry)

12 43

N

24 34 33

P
11

, P
14

, P
41

, P
44

S
i {P ... P } - {P ,P , P } - {P , P }

12 43

N
24 34 33 12 13

Fig. 3. Fan

the first patch, S1, there will only be four vertices (namely, the corners P11, P14, P41, P44)

that will have color and texture attributes; the remaining twelve vertices will have only

geometry attributes. Of the twelve vertices of each successive patch, Si, in the strip,

Extensions for 3D Graphics Rendering Engine 3

there will only be two vertices (namely, P14 and P44) that will have color and texture

attributes. It is this reduction in the number of vertices that will have color and texture

attributes that accounts for the reduction of the memory footprint and for the reduction

of the bus bandwidth necessary for transmitting the primitive from the CPU to the

rendering engine (GPU) over the AGP bus. Further compression is achieved because a

patch is expanded into potentially many triangles by the Tessellator Unit inside the

GPU. Referring to Figure 2, in a mesh, the anchor patch, S11 has sixteen vertices, all the

patches in the horizontal and vertical strips attached to S11 have twelve vertices and all

the other patches have nine vertices. Each patch has an outward pointing normal.

Referring to Figure 3, each patch has only three boundary curves, the fourth boundary

having collapsed to the center of the fan. The first patch in the fan enumeration has

eleven vertices; each successive patch has eight vertices. The vertex P11, which is listed

first in the fan definition, is the center of the fan and has color and texture attributes in

addition to geometric attributes. The first patch, S1, has two vertices with color and

texture attributes, namely P41 and P14; the remaining nine vertices have only geometric

attributes. Each successive patch, Si, has only one vertex with all the attributes.

The meshed curved patch data structures introduced above are designed to replace

the triangle data structures used in the conventional architectures. Within one patch

strip, the edge database must be retained for zippering reasons but no information needs

to be stored between two abutting patches. If two patches bounding two separate sur-

faces share an edge curve, they share the same control points and they will share the

same tessellation. By doing so we ensure the absence of cracks between patches that

belong to data structures that have been dispatched independently and thus our method

scales the exactly the same way the traditional triangle based method does.

