
 
  Lorentz Covariant Formulation for Force in SR 
            

 
 

The case that prompted the idea of rewriting the laws of physics in covariant form: 
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In one dimension, the relativistic momentum is simply 0 ( )p m v vγ= , so: 
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In three dimensions, things get a little more complicated: 
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If d
dt
v and v have the same direction and sense, then: 
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Returning to the one-dimensional case, in frame S’, moving with speed V along the 
common x-axis: 
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So, '
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dp dp
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= . While p is frame variant, it turns out that for the one dimensional case dp
dt

 

is frame invariant. Another interesting observation is that in frame S Newton’s law is 
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This is an immediate consequence of the fact that: 
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so: 
2 2

3 3
'2 2

'( ') ( )d x d xv v
dt dt

γ γ=         (1.11) 

We can conclude that, at relativistic speeds, Newton law 
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γ=  in order to be covariant. In other words, the Newtonian expression 

of force 
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=  needs to be replaced with its relativistic counterpart 
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indistinguishable but at relativistic speeds this is no longer the case. 
 
The above prompted Minkowski to reformulate Newton’s law as: 
 
d
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where  
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21 ( )v
c

=
−

M
FF is called the “Minkowski force”. So, d
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= M

p F is identical with d
dt

=
p F . 

 
We can now introduce the 4-vector ( , , , / ) ( , , , )x y z x y z wp p p W c p p p p= =p%  where W is 
the total energy. The 4-vectorp% transforms exactly the same way as ( , , , )x y z ct : 
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It follows immediately that ( / )( , , , )yx z
dpdp dpd d W c

d d d d dτ τ τ τ τ
=

p%  is also a 4-vector, since it 

transforms the same way as ( , , , )x y z ct  as well. Indeed: 
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The above gave the idea of introducing a new construct5: ( , . / )M M c=F F F v% . Since the left 

hand side of the equation d
dτ

=
p F
% %  is a 4-vector, the equation will be satisfied only for 

( , . / )M M c=F F F v%  quantities that are 4-vectors themselves. 
 
   
 
   Wave Equation Covariance 
 
 
Let’s start with the Lorentz transforms: 
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In frame S, the wave equation is (in 1+1 space): 
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From (2.1) we see that: 
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On the other hand: 
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Substituting the last two operators from (2.3) and (2.4) into (2.1) we obtain, after some 
reduction of like terms: 
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i.e. the Lorentz transforms preserve the wave equation form.  
 
The Lorentz-invariance of the Maxwell equations can be expressed in the coincise form 
as: 
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where  
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are four-vectors. 
 
    General Covariance 
 
In order to obtain the general covariant form for equations (2.6) we need to replace the 
ordinary differentiation in (2.6) with covariant differentiation. The four-vectors defined 
by (2.7) are covariant by virtue of their definition.  
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The first equation does not even change form with respect to (2.6) owing to the fact that 
the terms in the Christoffel symbols cancel out. We can prove easily that the definition 
(3.1) produces indeed a form that is generally covariant. Indeed. on one hand: 
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On the other hand: 
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so: 
 

'

' '

' ' ' ' '

x x
x x x x x x

µ

α β
µ βν α
ν µ µ ν ν

φ φφ φ∂ ∂∂ ∂∂ ∂
− = −

∂ ∂ ∂ ∂ ∂ ∂
       (3.4) 

 
Therefore: 
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Though we have demonstrated the general covariance of the rank two tensor F ,  this 
does not mean anything in terms of the usefulness of the transforms. Indeed, in the case 

of Shubert’s crackpot theory, the partial derivatives ' ',x x
x x

α β

µ ν

∂ ∂
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 acting on Fαβ  are virtually 

meaningless owing to their recursive form , so, for all practical purposes 'Fνµ  cannot be 
evaluated anywhere. This is a very serious defect, in addition to the fact that the jacobian 
of the transformation may be degenerate over a whole spacetime domain (an infinity of 
(x,t) points). In fact, the determinant of the jacobian needs to be equal to unity in order to 
preserve the metric invariance [1], something that does not happen in the case of 
Shubert’s jacobian since it is a function of the arbitrary synchronization functions Si and 
Sj. So, all the crap put up by Guest254 and AlphaNumeric is just that: crap.  
 
[1] C. Moller , The Theory of Relativity (pp. 94-95) 
 
 
 
      


